Using Fuzzy Self-Organising Maps for Safety Critical Systems
نویسندگان
چکیده
This paper defines a type of constrained Artificial Neural Network (ANN) that enables analytical certification arguments whilst retaining valuable performance characteristics. Previous work has defined a safety lifecycle for ANNs without detailing a specific neural model. Building on this previous work, the underpinning of the devised model is based upon an existing neurofuzzy system called the Fuzzy Self-Organising Map (FSOM). The FSOM is type of ‘hybrid’ ANN which allows behaviour to be described qualitatively and quantitatively using meaningful expressions. Safety of the FSOM is argued through adherence to safety requirements – derived from hazard analysis and expressed using safety constraints. The approach enables the construction of compelling (product-based) arguments for mitigation of potential failure modes associated with the FSOM. The constrained FSOM has been termed a ‘Safety Critical Artificial Neural Network’ (SCANN). The SCANN can be used for nonlinear function approximation and allows certified learning and generalisation. A discussion of benefits for real-world applications is also presented within the paper.
منابع مشابه
Exploiting Safety Constraints in Fuzzy Self-organising Maps for Safety Critical Applications
This paper defines a constrained Artificial Neural Network (ANN) that can be employed for highly-dependable roles in safety critical applications. The derived model is based upon the Fuzzy Self-Organising Map (FSOM) and enables behaviour to be described qualitatively and quantitatively. By harnessing these desirable features, behaviour is bounded through incorporation of safety constraints – de...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملSelf-Organising Networks for Classification Learning from Normal and Aphasic Speech
An understanding of language processing in humans is critical if realistic computerised systems are to be produced to perform various language operations. The examination of aphasia in individuals has provided a large amount of information on the organisation of language processing, with particular reference to the regions in the brain where processing occurs and the ability to regain language ...
متن کاملOn Self-organising Diagnostics in Impact Sensing Networks
Structural health management (SHM) of safety-critical structures requires multiple capabilities: sensing, assessment, diagnostics, prognostics, repair, etc. This paper presents a capability for self-organising diagnosis by a group of autonomous sensing agents in a distributed sensing and processing SHM network. The diagnostics involves acoustic emission waves emitted as a result of a sudden rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Rel. Eng. & Sys. Safety
دوره 92 شماره
صفحات -
تاریخ انتشار 2004